首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3206篇
  免费   628篇
  国内免费   281篇
测绘学   327篇
大气科学   166篇
地球物理   1393篇
地质学   1183篇
海洋学   144篇
天文学   41篇
综合类   129篇
自然地理   732篇
  2024年   7篇
  2023年   32篇
  2022年   100篇
  2021年   141篇
  2020年   158篇
  2019年   119篇
  2018年   134篇
  2017年   203篇
  2016年   181篇
  2015年   180篇
  2014年   214篇
  2013年   284篇
  2012年   170篇
  2011年   201篇
  2010年   173篇
  2009年   170篇
  2008年   191篇
  2007年   212篇
  2006年   181篇
  2005年   131篇
  2004年   121篇
  2003年   119篇
  2002年   116篇
  2001年   95篇
  2000年   82篇
  1999年   66篇
  1998年   47篇
  1997年   60篇
  1996年   45篇
  1995年   30篇
  1994年   34篇
  1993年   28篇
  1992年   18篇
  1991年   11篇
  1990年   13篇
  1989年   13篇
  1988年   12篇
  1987年   5篇
  1986年   4篇
  1985年   1篇
  1984年   3篇
  1983年   3篇
  1982年   2篇
  1981年   1篇
  1980年   1篇
  1972年   1篇
  1954年   2篇
排序方式: 共有4115条查询结果,搜索用时 235 毫秒
1.
Few long-term studies have explored how intensively managed short rotation forest plantations interact with climate variability. We examine how prolonged severe drought and forest operations affect runoff in 11 experimental catchments on private corporate forest land near Nacimiento in south central Chile over the period 2008–2019. The catchments (7.7–414 ha) contain forest plantations of exotic fast-growing species (Pinus radiata, Eucalyptus spp.) at various stages of growth in a Mediterranean climate (mean long-term annual rainfall = 1381 mm). Since 2010, a drought, unprecedented in recent history, has reduced rainfall at Nacimiento by 20%, relative to the long-term mean. Pre-drought runoff ratios were <0.2 under 8-year-old Eucalyptus; >0.4 under 21-year-old Radiata pine and >0.8 where herbicide treatments had controlled vegetation for 2 years in 38% of the catchment area. Early in the study period, clearcutting of Radiata pine (85%–95% of catchment area) increased streamflow by 150 mm as compared with the year before harvest, while clearcutting and partial cuts of Eucalyptus did not increase streamflow. During 2008–2019, the combination of emerging drought and forestry treatments (replanting with Eucalyptus after clearcutting of Radiata pine and Eucalyptus) reduced streamflow by 400–500 mm, and regeneration of previously herbicide-treated vegetation combined with growth of Eucalyptus plantations reduced streamflow by 1125 mm (87% of mean annual precipitation 2010–2019). These results from one of the most comprehensive forest catchment studies in the world on private industrial forest land indicate that multiple decades of forest management have reduced deep soil moisture reservoirs. This effect has been exacerbated by drought and conversion from Radiata pine to Eucalyptus, apparently largely eliminating subsurface supply to streamflow. The findings reveal tradeoffs between wood production and water supply, provide lessons for adapting forest management to the projected future drier climate in Chile, and underscore the need for continued experimental work in managed forest plantations.  相似文献   
2.
When the observation of small headwater catchments in the pre-Alpine Alptal valley (central Switzerland) started in the late 1960s, the researchers were mainly interested in questions related to floods and forest management. Investigations of geomorphological processes in the steep torrent channels followed in the 1980s, along with detailed observations of biogeochemical and ecohydrological processes in individual forest stands. More recently, research in the Alptal has addressed the impacts of climate change on water supply and runoff generation. In this article, we describe, for the first time, the evolution of catchment research at Alptal, and present new analyses of long-term trends and short-term hydrologic behaviour. Hydrometeorological time series from the past 50 years show substantial interannual variability, but only minimal long-term trends, except for the ~2°C increase in mean annual air temperature over the 50-year period, and a corresponding shift towards earlier snowmelt. Similar to previous studies in larger Alpine catchments, the decadal variations in mean annual runoff in Alptal's small research catchments reflect the long-term variability in annual precipitation. In the Alptal valley, the most evident hydrological trends were observed in late spring and are related to the substantial change in the duration of the snow cover. Streamflow and water quality are highly variable within and between hydrological events, suggesting rapid shifts in flow pathways and mixing, as well as changing connectivity of runoff-generating areas. This overview illustrates how catchment research in the Alptal has evolved in response to changing societal concerns and emerging scientific questions.  相似文献   
3.
The source and hydrochemical makeup of a stream reflects the connectivity between rainfall, groundwater, the stream, and is reflected to water quantity and quality of the catchment. However, in a semi-arid, thick, loess covered catchment, temporal variation of stream source and event associated behaviours are lesser known. Thus, the isotopic and chemical hydrographs in a widely distributed, deep loess, semi-arid catchment of the northern Chinese Loess Plateau were characterized to determine the source and hydrochemical behaviours of the stream during intra-rainfall events. Rainfall and streamflow were sampled during six hydrologic events coupled with measurements of stream baseflow and groundwater. The deuterium isotope (2H), major ions (Cl, SO42−, NO3, Ca2+, K+, Mg2+, and Na+) were evaluated in water samples obtained during rainfall events. Temporal variation of 2H and Cl measured in the groundwater and stream baseflow prior to rainfall was similar; however, the isotope compositions of the streamflow fluctuated significantly and responded quickly to rainfall events, likely due to an infiltration excess, overland dominated surface runoff during torrential rainfall events. Time source separation using 2H demonstrated greater than 72% on average, the stream composition was event water during torrential rainfall events, with the proportion increasing with rainfall intensity. Solutes concentrations in the stream had loglinear relationships with stream discharge, with an outling anomaly with an example of an intra-rainfall event on Oct. 24, 2015. Stream Cl behaved nonconservative during rainfall events, temporal variation of Cl indicated a flush and washout at the onset of small rainfall events, a dilution but still high concentration pattern in high discharge and old water dominated in regression flow period. This study indicates rainfall intensity affects runoff responses in a semi-arid catchment, and the stored water in the thick, loess covered areas was less connected with stream runoff. Solute transport may threaten water quality in the area, requiring further analysis of the performance of the eco-restoration project.  相似文献   
4.
Understanding changes in evapotranspiration during forest regrowth is essential to predict changes of stream runoff and recovery after forest cutting. Canopy interception (Ic) is an important component of evapotranspiration, however Ic changes and the impact on stream runoff during regrowth after cutting remains unclear due to limited observations. The objective of this study was to examine the effects of Ic changes on long-term stream runoff in a regrowth Japanese cedar and Japanese cypress forest following clear-cutting. This study was conducted in two 1-ha paired headwater catchments at Fukuroyamasawa Experimental Watershed in Japan. The catchments were 100% covered by Japanese coniferous plantation forest, one of which was 100% clear-cut in 1999 when the forest was 70 years old. In the treated catchment, annual runoff increased by 301 mm/year (14% of precipitation) the year following clear-cutting, and remained 185 mm/year (7.9% of precipitation) higher in the young regrowth forest for 12–14 years compared to the estimated runoff assuming no clear-cutting. The Ic change was −358 mm/year (17% of precipitation) after cutting and was −168 mm/year (6.7% of precipitation) in the 12–14 years old regrowth forest compared to the observed Ic during the pre-cutting period. Stream runoff increased in all seasons, and the Ic change was the main fraction of evapotranspiration change in all seasons throughout the observation period. These results suggest that the change in Ic accounted for most of the runoff response following forest cutting and the subsequent runoff recovery in this coniferous forest.  相似文献   
5.
胡西武  刘小鹏  黄越  黄立军  东梅 《地理学报》2020,75(10):2224-2240
生态移民村是一种具有扶贫脱贫与生态保护双重意义的特殊乡村类型,是乡村振兴不可或缺的重要对象。在空间重构过程中形成的空间剥夺现象,是当前生态移民村全面振兴面临的一个新问题。为探究生态移民村空间剥夺规律,以宁夏70个生态移民村2017年相关数据为基础,构建了以收入就业、教育培训、社会生活、居住环境及公共服务可达性为主要内容的空间剥夺指标体系并进行水平测度,进而运用地理加权回归和地理探测器对其影响因子进行探测。结果显示:① 宁夏生态移民村空间剥夺整体水平较低,但总指数均值相对于非生态移民村显著高出0.023;② 宁夏生态移民村空间剥夺时空分异特征明显,总指数均值在时间上呈现“先较低—后上升—再下降”趋势,在空间上呈现“北部低—中部高—南部次高”分布;③ 民族构成、地形地貌、移民时段、依托资源和经济区带是影响生态移民村空间剥夺的重要因子,前3项对空间剥夺总指数的解释力分别达到了22.4%、10.6%和14.0%。空间剥夺水平测度为生态移民生产生活评价和政策调整完善提供新的客观依据,相关部门可据此优化调节生态移民村空间资源配置,增加其获取资源的能力和机会,推动生态移民村全面振兴。  相似文献   
6.
为建立高精度的边坡位移预测模型,采用相空间重构(PSR)将边坡位移时间序列数据转换为多维数据,同时构造小波核函数改进的支持向量机模型,建立PSR-WSVM模型并应用于边坡位移预测。将PSR-WSVM模型预测结果与传统支持向量机(SVM)模型、小波支持向量机(WSVM)模型和基于相空间重构的支持向量机(PSR-SVM)模型预测结果进行对比,通过平均绝对误差(MAE)、平均绝对误差百分比(MAPE)和均方根误差(RMSE)3个精度评价指标验证PSR-WSVM模型的可行性。工程实例结果表明,PSR-WSVM模型预测结果的3个精度评价指标都优于另外3种模型,边坡位移预测的精度明显提升。  相似文献   
7.
机载LiDAR在公路勘测方面的用途日益广泛。该文对直升机机载LiDAR在高速公路改扩建中的应用技术路线可行性进行了研究论证,从地面控制测量、点云数据获取、点云数据处理、成果应用等多个方面进行了阐述,通过分析LiDAR点云数据在5种不同地面控制点布设方案校正下的点云数据精度,论证了利用地面控制点对直升机机载LiDAR点云数据进行平面和高程校正的可行性。  相似文献   
8.
We investigate our ability to assess transfer of hexavalent chromium, Cr(VI), from the soil to surface runoff by considering the effect of coupling diverse adsorption models with a two‐layer solute transfer model. Our analyses are grounded on a set of two experiments associated with soils characterized by diverse particle size distributions. Our study is motivated by the observation that Cr(VI) is receiving much attention for the assessment of environmental risks due to its high solubility, mobility, and toxicological significance. Adsorption of Cr(VI) is considered to be at equilibrium in the mixing layer under our experimental conditions. Four adsorption models, that is, the Langmuir, Freundlich, Temkin, and linear models, constitute our set of alternative (competing) mathematical formulations. Experimental results reveal that the soil samples characterized by the finest grain sizes are associated with the highest release of Cr(VI) to runoff. We compare the relative abilities of the four models to interpret experimental results through maximum likelihood model calibration and four model identification criteria (i.e., the Akaike information criteria [AIC and AICC] and the Bayesian and Kashyap information criteria). Our study results enable us to rank the tested models on the basis of a set of posterior weights assigned to each of them. A classical variance‐based global sensitivity analysis is then performed to assess the relative importance of the uncertain parameters associated with each of the models considered, within subregions of the parameter space. In this context, the modelling strategy resulting from coupling the Langmuir isotherm with a two‐layer solute transfer model is then evaluated as the most skilful for the overall interpretation of both sets of experiments. Our results document that (a) the depth of the mixing layer is the most influential factor for all models tested, with the exception of the Freundlich isotherm, and (b) the total sensitivity of the adsorption parameters varies in time, with a trend to increase as time progresses for all of the models. These results suggest that adsorption has a significant effect on the uncertainty associated with the release of Cr(VI) from the soil to the surface runoff component.  相似文献   
9.
Sustainable fuels legislation and volatility in energy prices have put additional pressures on the forestry sector to intensify the harvesting of biomass for “advanced biofuel” production. To better understand how residual biomass removal after harvest affects forest hydrology in relatively low slope terrain, a Before-After-Control-Impact (BACI) study was conducted in the USDA Forest Service's Marcell Experimental Forest, Minnesota, USA. Hydrological measurements were made from 2010–2013 on a forested hillslope that was divided into three treatment blocks, where one block was harvested and residual biomass removed (Biomass Removed), the second was harvested and residual biomass left (Biomass Left), and the last block was left as an Unharvested Control. The pre-harvest period (2 years) was 2010–11 and post-harvest (2 years) was 2012–13. Water table elevation at the upslope and downslope position, subsurface runoff, and soil moisture were measured between May–November. Mixed effect statistical models were used to compare both the before-after and “control” treatment ratios (ratios between harvested hillslopes and the Unharvested Control hillslope). Subsurface runoff significantly increased (p < .05) at both harvested hillslopes but to a greater degree on the Biomass Left hillslope. Greater subsurface runoff volumes at both harvested hillslopes were driven by substantial increases during fall, with additional significant increases during summer on the Biomass Left hillslope. The hydrological connectivity, inferred from event runoff ratios, increased due to harvesting at both hillslopes but only significantly on the Biomass Left hillslope. The winter harvest minimized soil disturbance, resulting in no change to the effective hydraulic conductivity distribution with depth. Thus, the observed hydrological changes were driven by increased effective precipitation and decreased evapotranspiration, increasing the duration that both harvested hillslopes were hydrologically active. The harvesting of residual biomass appears to lessen hydrological connectivity relative to leaving residual biomass on the hillslope, potentially decreasing downstream hydrological impacts of similar forestry operations.  相似文献   
10.
为克服传统农田土地平整测量方法耗时费力的特点,提出采用LiDAR技术对农田地形进行重建的探索性研究。通过HDL-32E型激光雷达等搭建了系统的硬件平台,应用C++语言编写了系统数据的采集程序;在此基础上对激光雷达所采集数据进行了标定,研究了农田地形重建系统中不同坐标系的转换方法;同时基于最小值去噪法设计了更适用于农田地形点云去噪的均值限差去噪法。通过对比在农田起伏较大区域不同坡度范围内RTK与激光雷达所测单元个数,对系统精度进行了评价;最后实现了车载农田地形重建系统的界面显示、应用与精度评估。结果表明,在10°~15°、25°~30°大坡度范围内激光雷达所获农田地形更为丰富,精度更高。该方法重建的农田地形模型点云数据和原始农田地形点云数据投影面积逼近度可达93%,验证了本文研究方法应用于农田地形环境重建的可行性,同时为今后的土地精细平整工作提供了理论参考与依据。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号